3.622 \(\int \frac {(c x)^{5/2}}{(a+b x^2)^{3/2}} \, dx\)

Optimal. Leaf size=266 \[ \frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} \operatorname {EllipticF}\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right ),\frac {1}{2}\right )}{2 b^{7/4} \sqrt {a+b x^2}}-\frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{b^{7/4} \sqrt {a+b x^2}}+\frac {3 c^2 \sqrt {c x} \sqrt {a+b x^2}}{b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}} \]

[Out]

-c*(c*x)^(3/2)/b/(b*x^2+a)^(1/2)+3*c^2*(c*x)^(1/2)*(b*x^2+a)^(1/2)/b^(3/2)/(a^(1/2)+x*b^(1/2))-3*a^(1/4)*c^(5/
2)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/
2)))*EllipticE(sin(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/
(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*x^2+a)^(1/2)+3/2*a^(1/4)*c^(5/2)*(cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(
1/4)/c^(1/2)))^2)^(1/2)/cos(2*arctan(b^(1/4)*(c*x)^(1/2)/a^(1/4)/c^(1/2)))*EllipticF(sin(2*arctan(b^(1/4)*(c*x
)^(1/2)/a^(1/4)/c^(1/2))),1/2*2^(1/2))*(a^(1/2)+x*b^(1/2))*((b*x^2+a)/(a^(1/2)+x*b^(1/2))^2)^(1/2)/b^(7/4)/(b*
x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.19, antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {288, 329, 305, 220, 1196} \[ \frac {3 c^2 \sqrt {c x} \sqrt {a+b x^2}}{b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}+\frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{2 b^{7/4} \sqrt {a+b x^2}}-\frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{b^{7/4} \sqrt {a+b x^2}}-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(c*x)^(5/2)/(a + b*x^2)^(3/2),x]

[Out]

-((c*(c*x)^(3/2))/(b*Sqrt[a + b*x^2])) + (3*c^2*Sqrt[c*x]*Sqrt[a + b*x^2])/(b^(3/2)*(Sqrt[a] + Sqrt[b]*x)) - (
3*a^(1/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticE[2*ArcTan[(b^(1/4)*
Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(b^(7/4)*Sqrt[a + b*x^2]) + (3*a^(1/4)*c^(5/2)*(Sqrt[a] + Sqrt[b]*x)*Sqrt
[(a + b*x^2)/(Sqrt[a] + Sqrt[b]*x)^2]*EllipticF[2*ArcTan[(b^(1/4)*Sqrt[c*x])/(a^(1/4)*Sqrt[c])], 1/2])/(2*b^(7
/4)*Sqrt[a + b*x^2])

Rule 220

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[((1 + q^2*x^2)*Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]*EllipticF[2*ArcTan[q*x], 1/2])/(2*q*Sqrt[a + b*x^4]), x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 305

Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Dist[1/q, Int[1/Sqrt[a + b*x^4], x],
 x] - Dist[1/q, Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1196

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, -Simp[(d*x*Sqrt[a + c
*x^4])/(a*(1 + q^2*x^2)), x] + Simp[(d*(1 + q^2*x^2)*Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]*EllipticE[2*ArcTan[
q*x], 1/2])/(q*Sqrt[a + c*x^4]), x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rubi steps

\begin {align*} \int \frac {(c x)^{5/2}}{\left (a+b x^2\right )^{3/2}} \, dx &=-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}}+\frac {\left (3 c^2\right ) \int \frac {\sqrt {c x}}{\sqrt {a+b x^2}} \, dx}{2 b}\\ &=-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}}+\frac {(3 c) \operatorname {Subst}\left (\int \frac {x^2}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{b}\\ &=-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}}+\frac {\left (3 \sqrt {a} c^2\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{b^{3/2}}-\frac {\left (3 \sqrt {a} c^2\right ) \operatorname {Subst}\left (\int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a} c}}{\sqrt {a+\frac {b x^4}{c^2}}} \, dx,x,\sqrt {c x}\right )}{b^{3/2}}\\ &=-\frac {c (c x)^{3/2}}{b \sqrt {a+b x^2}}+\frac {3 c^2 \sqrt {c x} \sqrt {a+b x^2}}{b^{3/2} \left (\sqrt {a}+\sqrt {b} x\right )}-\frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{b^{7/4} \sqrt {a+b x^2}}+\frac {3 \sqrt [4]{a} c^{5/2} \left (\sqrt {a}+\sqrt {b} x\right ) \sqrt {\frac {a+b x^2}{\left (\sqrt {a}+\sqrt {b} x\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} \sqrt {c x}}{\sqrt [4]{a} \sqrt {c}}\right )|\frac {1}{2}\right )}{2 b^{7/4} \sqrt {a+b x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.03, size = 60, normalized size = 0.23 \[ -\frac {2 c (c x)^{3/2} \left (\sqrt {\frac {b x^2}{a}+1} \, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\frac {b x^2}{a}\right )-1\right )}{b \sqrt {a+b x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*x)^(5/2)/(a + b*x^2)^(3/2),x]

[Out]

(-2*c*(c*x)^(3/2)*(-1 + Sqrt[1 + (b*x^2)/a]*Hypergeometric2F1[3/4, 3/2, 7/4, -((b*x^2)/a)]))/(b*Sqrt[a + b*x^2
])

________________________________________________________________________________________

fricas [F]  time = 1.00, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {\sqrt {b x^{2} + a} \sqrt {c x} c^{2} x^{2}}{b^{2} x^{4} + 2 \, a b x^{2} + a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*x^2 + a)*sqrt(c*x)*c^2*x^2/(b^2*x^4 + 2*a*b*x^2 + a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {5}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="giac")

[Out]

integrate((c*x)^(5/2)/(b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 197, normalized size = 0.74 \[ \frac {\sqrt {c x}\, \left (-2 b \,x^{2}+6 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, a \EllipticE \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )-3 \sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {2}\, \sqrt {\frac {-b x +\sqrt {-a b}}{\sqrt {-a b}}}\, \sqrt {-\frac {b x}{\sqrt {-a b}}}\, a \EllipticF \left (\sqrt {\frac {b x +\sqrt {-a b}}{\sqrt {-a b}}}, \frac {\sqrt {2}}{2}\right )\right ) c^{2}}{2 \sqrt {b \,x^{2}+a}\, b^{2} x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(b*x^2+a)^(3/2),x)

[Out]

1/2*c^2/x*(c*x)^(1/2)*(6*((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1
/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*EllipticE(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a-3*((b*x+(-a*b
)^(1/2))/(-a*b)^(1/2))^(1/2)*2^(1/2)*((-b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2)*(-1/(-a*b)^(1/2)*b*x)^(1/2)*Elli
pticF(((b*x+(-a*b)^(1/2))/(-a*b)^(1/2))^(1/2),1/2*2^(1/2))*a-2*b*x^2)/(b*x^2+a)^(1/2)/b^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (c x\right )^{\frac {5}{2}}}{{\left (b x^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)^(5/2)/(b*x^2+a)^(3/2),x, algorithm="maxima")

[Out]

integrate((c*x)^(5/2)/(b*x^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (c\,x\right )}^{5/2}}{{\left (b\,x^2+a\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x)^(5/2)/(a + b*x^2)^(3/2),x)

[Out]

int((c*x)^(5/2)/(a + b*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [C]  time = 7.30, size = 44, normalized size = 0.17 \[ \frac {c^{\frac {5}{2}} x^{\frac {7}{2}} \Gamma \left (\frac {7}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {3}{2}, \frac {7}{4} \\ \frac {11}{4} \end {matrix}\middle | {\frac {b x^{2} e^{i \pi }}{a}} \right )}}{2 a^{\frac {3}{2}} \Gamma \left (\frac {11}{4}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x)**(5/2)/(b*x**2+a)**(3/2),x)

[Out]

c**(5/2)*x**(7/2)*gamma(7/4)*hyper((3/2, 7/4), (11/4,), b*x**2*exp_polar(I*pi)/a)/(2*a**(3/2)*gamma(11/4))

________________________________________________________________________________________